EVENT CLAUDE & IA

Claude sous le capot

Comprendre la mécanique pour mieux I'exploiter

Fabien ¢ Koality.fr

ACTE 1

Démystifier le vocabulaire

Avant d'aller plus loin, il faut déméler ce qu'on entend par "Claude". AU PROGRAMME

* Modéles vs Ouitils

_) _ * Desktop vs Code
L'interface web, I'app desktop, Claude Code, les modeles Haiku, Sonnet,

Opus... Ce n'est pas la méme chose. * Le point clé

Modeles vs Outils

. MODELES

Le cerveau — hébergé chez Anthropic

* Haiku — rapide, économique
* Sonnet — équilibré
* Opus — le plus puissant

. OUTILS

Le véhicule — interfaces d'accées

* Claude.ai — interface web

* Desktop — app macOS/Win
* Claude Code — CLI dev

* APl — intégration

Méme cerveau, carrosseries différentes

Desktop vs Code : 3 différences

1. Prompt systéme 2. Outils (tools) 3. Environnement

Le briefing invisible au démarrage Les capacités exposées Ou ca s'exécute
DESKTOP DESKTOP DESKTOP
"Assistant polyvalent, prudent" Web search, artifacts, uploads Sandboxé, serveurs Anthropic
CODE CODE CODE

"Ingénieur senior, autonome" Bash, filesystem, écriture Local, accés a ta machine

POINT CLE

Le modele seul ne fait rien d'utile

Un LLM, c'est une fonction : texte — texte. C'est tout.

La "magie" — lire des fichiers, exécuter du code, chercher sur le web — vient de
I'orchestration autour du modéle.

ACTE 2

La mécanique agentique

AU PROGRAMME

Comment Claude "réfléchit", agit, et boucle sur ses résultats. *Le LLM est stateless
* Client vs Serveur

Spoiler : c'est beaucoup plus simple qu'on ne croit. * Appels d'outils
* Le "thinking"

Le LLM est béte et amnésique

A chaque appel API : CONSEQUENCES
0 Recoit un blob de texte » Stateless — pas de mémoire entre
appels
e . . * Passif — répond, n'initie rien
Génére une réponse
* Inconscient — ne "sait" pas qu'il est

. dans une conversation
‘ Oublie tout

Ou se passe la boucle ?

4)
& TON ORDINATEUR & SERVEURS ANTHROPIC
CLAUDE CODE (CLI) — LLM
%
Orchestrateur + Exécuteur d'outils Input — Output (c'est tout)
API
4 LABOUCLEESTICI ¥ PAS DE BOUCLE ICI
Bash, filesystem, grep... Pas de mémoire entre appels

La boucle en action

"Corrige le bug dans utils.py"

a TOUR 1

— Envoi : "Corrige le bug

«— LLM : "Je vais lire..."

tool: read_file("utils.py")

9 TOUR 2

— Envoi : contexte + fichier

«— LLM : "Bug ligne 42..."

tool: write_file("utils.py")

‘ TOUR 3

— Envoi : "fichier modifié

«— LLM : "J'ai corrigé..."

v Réponse finale

3 appels API, 3 "réveils" amnésiques. Le contexte renvoye crée l'illusion de continuité.

Comment le modele "décide" ?

Il ne "décide" pas vraiment. Il génére du texte, et parfois ce texte a
un format spécial.

CE QUI SE PASSE

ENTREE Le modéle génére token par token. Les
probabilités favorisent le format tool_call car :

"Lis config.py" + tools: [read_file, bash, grep] . .
* L'entrainement I'a associé a ce

contexte
* Le prompt systéme l'encourage
SORTIE "Je ne peux pas" a une proba plus
faible

"Je vais lire le fichier" + tool_call: read_file("config.py")

Les 3 types de "réflexion"

1. Implicite

Toujours I3, invisible

Dans les poids du modéle, pendant la
génération. C'est la boite noire.

OU : Serveurs (forward pass)

2. Extended thinking

Optionnel, bloc visible

UN SEUL appel API. Le modéle verbalise
ses étapes avant de répondre.

OU : Serveurs (génération)

3. Boucle agentique

Plusieurs appels API

L'orchestrateur (Claude Code) gére la
boucle. Le LLM ne sait pas qu'il boucle.

OU : Ton ordinateur

ACTE 3

Les Skills

AU PROGRAMME

Personnaliser Claude avec des compétences sur-mesure. * C'est quoi une skill ?
» Chargement progressif

Sans fine-tuning, sans complexité. Juste du texte structuré. « Saturation et collisions
* Skills vs GPT Custom

Anatomie d'une Skill

SKILL.md
STRUCTURE
ma-skill/ name: email-writer
SKILL.md description: "Rédaction emails. Utiliser quand... NE PAS
scripts/ utiliser pour..."
references/ .
L assets/ # Email Writer

Workflow

Le trigger, c'est la description. Mal écrite = skill jamais déclenchée.

Chargement progressif

NIVEAU 1 Métadonnées TOUJOURS

~100 tokens/skill Noms et descriptions de toutes les skills — toujours en contexte -

NIVEAU 3 Ressources A LA DEMANDE

Variable Scripts, documentation détaillée, templates — chargé quand Claude en a besoin

NIVEAU 2 SKILL.md complet

~2k tokens Instructions, workflows, exemples — chargé si la demande match la description

50+ skills : le vrai probleme

v PAS UN PROBLEME DE PLACE
EXEMPLE DE COLLISION
70 skills = ~4000 tokens

Sur 200k dispenibles = 2% A: "Aide a rediger des emails”
B: "Communications écrites"

C: "Rédaction business"
X COLLISION DE TRIGGERS

Descriptions trop proches — hésitation

User: "Aide-moi a écrire un email"
Domaines qui se chevauchent — erreur

— Les 3 matchent. Laquelle ?
Instructions contradictoires — incohérence

Skills vs GPT Custom

GPT CUSTOM SKILLS
Un assistant = une spécialité Un assistant = plusieurs compétences
» Changer de domaine = changer de GPT » Changer de domaine = transparent
* Contexte perdu au switch Contexte préserve
» Taches transverses difficiles * Transversalité native
* Interface graphique de création * Fichiers Markdown

Analogie : 10 consultants spécialisés vs 1 consultant senior polyvalent

Ce qu'il faut retenir

MODELES VS OUTILS

BOUCLE AGENTIQUE SKILLS
Méme cerveau (Sonnet, Opus), N N
i . Coté client, pas serveur. Le LLM est Du texte injecté dans le prompt. Le
carrosseries différentes (Desktop, e) L
stateless et amnésique. trigger, c'est la description.

Code)

Pas de magie. De l'ingénierie logicielle autour d'un modéle trés capable.

DEMO LIVE

Créer une Skill

On va décortiquer le Skill Creator d'Anthropic, puis créer une skill
ensemble.

Les meilleures pratiques, directement de la source.

AU PROGRAMME

* Anatomie du Skill Creator
* Principes clés
e Création en live

Skill Creator : les 4 principes

Extrait du guide officiel d'Anthropic

1. Concis avant tout

"The context window is a public
good"

Chaque token compte. Les
skills partagent I'espace
avec tout le reste.

2. Claude est déja
smart

"Only add context Claude
doesn't have"

Pas besoin d'expliquer ce
qu'il sait déja. Focus sur le
spécifique.

3. Degrés de liberté

"Match specificity to fragility"

Tache fragile = instructions
précises. Tache flexible =
guidelines.

4. Disclosure
progressive

"Three-level loading system"

Métadonnées — SKILL.md
— Ressources. Charger le
minimum.

La description : make or break

X MAUVAIS
description: "Aide a créer des documents"

Trop vague. Conflit avec d'autres skills. Ne trigger jamais
correctement.

v BON

description: "Création de fichiers .docx Word. Utiliser pour:
nouveaux documents, modification de .docx. NE PAS utiliser
pour: PDF, markdown."

Précis. Cas d'usage explicites. Exclusions claires.

Regle d'or : La description dit CE QUE fait la skill, QUAND I'utiliser, et QUAND NE PAS I'utiliser.

Ressources bundlées : quand les utiliser ?

. scripts/

Code exécutable

Quand le méme code est réécrit a chaque
fois. Déterministe, testé, réutilisable.

rotate_pdf.py, export_csv.py

references/

Documentation

Infos que Claude doit consulter pendant le
travail. Chargé a la demande.

schema.md, api_docs.md

n assets/

Fichiers pour l'output

Templates, images, fonts. Utilisés dans le
résultat final, pas lus en contexte.

template.pptx, logo.png

CREATION EN LIVE

Quelle skill on crée ensemble ?

Générateur de i) L
i Assistant email Autre idée ?
devis
Pro et concis Proposez !
Freelance-friendly

Questions

CONTACT RESSOURCES

contact@koality.fr docs.anthropic.com

Merci !

